\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

For problems 1 and 2, find the equation of the line through the given points. Write the equation in slope-intercept form or standard form.

1. Through the points $(-3,2)$ and $(9,6)$.
2. Through the points $(7,3)$ and $(12,10)$.

For problems 3 and 4, find the domain of the following functions:
3. $f(x)=\frac{x^{2}+1}{\sqrt{x^{2}-3 x+2}}$
4. $f(x)=\frac{\sqrt{x-7}}{x^{2}-5 x-14}$

For problems 5 and 6 , graph the following equations on the same axes:
5. $y=|x-1|$ and $y=x^{2}-1$
6. $y=\sqrt{x-2}$ and $y=|x-2|$

For problems 7 and 8, find the limits provided they exists:
7. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
8. $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-5 x+6}$

For problems 9 and 10, determine if the following functions are continuous at the given point:
9. $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ -23 & \text { if } x=1\end{array}\right.$ at the point $x=1$.
10. $\quad f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x}-1}{x-1} & \text { if } x \neq 1 \\ \frac{1}{2} & \text { if } x=1\end{array}\right.$ at the point $x=1$.

For problems 11 and 12, determine if the following limits exist or not. If they exist compute them, otherwise explain why the limit does not exist:
11. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
12. $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4}$
13. Compute the following limit, provide it exists: $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x}$

